2011 Consumer Confidence Report Water System Name: Goldside/Hillview Report Date: 6/26/2012 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2011. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. Type of water source(s) in use: Hard rock wells, which draw from underground aquifers. Name & location of source(s): Hillview Estates – Well #1, Goldside – Well #2, Well #4, Well #6, Well #7, River Creek - Well #1 and Well #2 & Miami Creek #1. Drinking Water Source Assessment information: A source water assessment was conducted for the active water supply wells of the Hillview Water Co. – Goldside by Department of Health services on August 20, 2002. The sources considered most vulnerable to the following activities not associated with any detected contaminants: Wells – Water supply, septic system – low density, sewer collection systems. A copy of the complete assessment may be viewed at: Hillview Water Co. – Goldside, 40312 Greenwood Way, Oakhurst, CA 93644. You may request a summary of the assessment be sent to you by contacting: Mr. James Foster (559)683-4322, P.O. Box 2269, Oakhurst, CA 93644 Time and place of regularly scheduled board meetings for public participation: Do not schedule meetings at regular Intervals. Public is allowed to participate in all CPUC proceedings. For more information, contact: Hillview Water Co., Inc. Phone: (559) 683-4322 ## TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). **Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions. **ND**: not detectable at testing limit **ppm**: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (ug/L) ppt: parts per trillion or nanograms per liter (ng/L) **ppq**: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. ### Contaminants that may be present in source water include: - *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the state Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. | TABLE 1 – | SAMPLING | RESULTS | SHOWING T | HE DETECT | TION OF | COLIFORM BACTERIA | |--|------------------------------|---|---|--------------------------------|---------|---| | Microbiological Contaminants (complete if bacteria detected) | Highest No.
of Detections | No. of
months
in
violation | MCL | | MCLG | Typical Source of Bacteria | | Total Coliform Bacteria | (In a mo.)
1 | 0 | More than 1 sample in a month with a detection | | 0 | Naturally present in the environment | | Fecal Coliform or E. coli | (In the year) | 0 | A routine sample
sample detect tot
and either sample
fecal coliform or | tal coliform
e also detects | 0 | Human and animal fecal waste | | TABLE 2 | – SAMPLIN | G RESUL | TS SHOWING | THE DETE | CTION O | LEAD AND COPPER | | Lead and Copper
(complete if lead or copper
detected in the last sample set) | No. of samples collected | 90 th
percentile
level
detected | No. sites exceeding AL | AL | PHG | Typical Source of Contaminant | | Lead (ppb) | 10 | 7.8 | None | 15 | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper (ppb) | 10 | 123 | None | 1300 | 0.3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | 2011 SWS CCR Form Revised Jan 2012 | TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS | | | | | | | | |--|----------------|-------------------|---------------------|------|---------------|--|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | | Sodium (ppm) | 11/11 | 27.4 | 12-448 | none | none | Salt present in the water and is generally naturally occurring | | | Hardness (ppm) | 11/11 | 301 | 57-434 | none | none | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | | *Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report. | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
 MRDL | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | |---|----------------|-------------------|------------------------|--------------|--------------------------|--| | *Gross Alpha Activity –
pCi/L | 11/11 | 38.5 | 1.1 – 38.5 | 15 | n/a | Erosion of natural deposits | | Uranium ~ pCi/L | 9/09 | 8.8 | 0-11.9 | 20 | .43 | Erosion from natural deposits | | Arsenic - ppb | 8/09 | 3.3 | 0 – 5.9 | 10 | n/a | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes. | | Chromium – ppb | 8/9 | 8.0 | 3.7 - 8.0 | 50 | (100) | Discharge from Steel and pulp mills and chrome plating; crosion of natural deposits. | | Fluoride - ppm | 8/09 | .37 | 041 | 2.0 | n/a | Erosion of natural deposits: water additive which promotes strong teeth: discharge from fertilizer and aluminum factories. | | Nickel - ppb | 9/09 | 12.4 | 0-13.9 | 100 | n/a | Erosion of natural deposits; discharge fro metal factories. | | Nitrate (as Nitrogen) -
ppm | 11/11 | 21 | 0 – 21.0 | 45 | 45
n/a | Runoff and leaching from fertilizer use;
leaching from septic tanks, sewage, erosic
from natural deposit. | | Selenium – ppb | 9/09 | 16.1 | 0-16.1 | 50 | (50) | Discharge from petroleum, glass, and metal refineries; crosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive). | #### TABLE 5 – DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD **Chemical or Constituent** Sample Level Range of PHG MCL Typical Source of Contaminant Date Detected **Detections** (MCLG) (and reporting units) Chloride - ppm 11/11220 5.5 - 850500 n/a Runoff/ leaching from natural deposits; seawater influence. Color - units 11/11 <1.0 5-10 15 n/a Naturally-occurring organic materials. Iron - ppb 434** 8/09 0-534 300 n/a Leaching from natural deposits Manganese - ppb 8/09 177 0 - 241 50 n/a Leaching from natural deposits. Specific Conductance -H/H890 Substances that form ions when in water; 140 - 31001600 n/a seawater influence Microhms 2011 SWS CCR Form Revised Jan 2012 | Sulfate (SO ₄) - ppm | 11/11 | 8.8 | 0-26.6 | 500 | n/a | Runoff/ leaching from natural deposits. | |---|----------------|-------------------|------------------------|--------------------|---------|---| | Total Dissolved Solids
(TDS) - ppm | 11/11 | 620 | 121 - 1900 | 1000 | n/a | Runoff/ leaching from natural deposits | | Turbidity – NTU | 11/11 | <1.0 | <1 - 2.1 | 5.0 | n/a | Soil runoff. | | Zinc – ppm | 9/09 | 3.2 | 0 – 3.2 | 5.0 | n/a | Runoft/ leaching from natural deposits | | | TABLE 6 | – DETEC | TION OF UNR | REGULATE | D CONTA | AMINANTS | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | Notification Level | | Health Effects Language | ^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. ## Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Hillview Water Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement Certain minerals are radioactive and may emit a form of radiation known as alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer. **Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. CDPH updated the Hillview-Goldside water supply permit via WSPA No. 03-11-10PA-001 dated 2/16/10 after review of facilities and addition of new well (#7) and booster plant. 2011 SWS CCR Form Revised Jan 2012